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Introduction 
 

One of the barriers to performing high-fidelity computational simulation of reactor core 
phenomena is the production of good-quality geometry and mesh models required by these 
simulations. Although a variety of geometry and meshing tools are available, they suffer from 
shortcomings in usability, robustness, or generality which makes them difficult to apply to 
reactor applications. The SHARP frameworks project is addressing these deficiencies by 
developing a library of mesh generation algorithms, and tools based on that library. The library 
is known as MeshKit, and one of the tools being developed is named RGG, for Reactor 
Geometry (and mesh) Generator. 

Over the past year, our meshing-related work was split between general design improvements 
in MeshKit, enhancing RGG to run in parallel, and the application of RGG to several specific 
reactor designs. These activities are described in this report. 

2 MeshKit Design 
 

Early development activities in MeshKit focused on adding raw meshing-related 
capabilities. Capabilities were developed for surface (tri, quad) and volume (tet, hex) mesh 
generation, for interacting with geometric models, and various other infrastructure used in the 
meshing process (e.g. mesh smoothing, mesh-based geometry). Without a unifying design, 
the various algorithms in MeshKit could not be used together without extra effort. During 
FY11, we developed and implemented a unified MeshKit design which facilitates interactions 
between the MeshKit algorithms. 

The unifying theme behind this new design for MeshKit is that the meshing process 
can be posed as a graph-based problem, with nodes of the graph representing a meshing-
related function and edges representing data dependencies between nodes. In a traditional 
geometry- based meshing approach, the nodes might correspond to geometric vertices, 
edges, faces, and regions. However, other mesh generation approaches can also be 
described by graphs, with graph nodes representing other data concepts. For example, a 
copy/move/merge meshing approach, like that supported by RGG, with nodes for generating 
the geometry, then the mesh, for the different assembly types, nodes for copying assembly 
types into the core lattice, and a single node for merging coincident vertices. After 
implementation of the graph-based design into core MeshKit classes, the various algorithms 
and tools in MeshKit were moved into the new design. After these changes, interactions 
between the tools were much easier to implement. A complete description of the new MeshKit 
design is beyond the scope of this report, but can be found in Ref. [1]. 

In FY11 we also developed a new, open-source all-quadrilateral meshing algorithm Jaal. This 
method is based on combining triangles to form quadrilaterals, and has demonstrated good 
robustness for a variety of geometric models. This algorithm is described in a forthcoming 
paper at the International Meshing Roundtable conference [2]. 

3 RGG Enhancements 
 

AssyGen was implemented in the new graph-based meshing approach, currently 
under development in MeshKit. In the graph-based design after AssyGen operation, various 
open source meshers such as triangle, CAMAL tet-mesher, Jaal quad-mesher and parallel tet- 

 



 

mesher can be used to mesh the assembly geometry. The user interface and robustness of 
the library-based meshing are still under development. Current work involves implementing 
CoreGen in the new MeshKit design. Several other enhancements were made to RGG, based 
either on user requests or deficiencies identified in the applications described in the next 
section of this report: 

• CoreGen support for geometric models: CoreGen was modified to allow generation 
of geometric models of a core lattice, instead of just mesh models. The user input for 
generating core geometry models is almost identical to that used for mesh models; the 
new “ProblemType” keyword is used to specify if geometry or mesh is desired. 

• Support for ACIS or OCC: RGG was used to further debug the port of the Common 
Geometry Module (CGM) to the Open.CASCADE solid modeling engine. AssyGen and 
CoreGen now support generation of models using either OCC or ACIS, depending on 
how the version of CGM used by RGG is configured. 

New keywords: New keywords “EdgeInterval” and “CreateSideSet” were introduced in the 
AssyGen scripting language for specifying the interval on outer edges of the assembly 
geometry and for specifying controls for sidesets creation, respectively. The 
“CreateNeumannSet” keyword for CoreGen can be used to specify Neumann sets on top, 
side, and/or bottom sides of the overall core mesh. 

Earlier in the year, the capability was developed in MOAB to perform vertex merging in 
parallel, using a small modification to the algorithm which matches shared inter-processor 
interfaces in the mesh [3]. This capability also enabled the development of the parallel 
CoreGen tool. The basic algorithm used in this tool can be summarized in five steps: 

1. On each processor: read CoreGen input file, parse, and determine assembly copies 
assigned to this processor based on a round-robin distribution. 

2. Locally read assembly meshes for assemblies determined in step 1.  

3. Perform assembly copy/move operations assigned to this processor.  

4. Perform parallel merge.  

5. Save output mesh.  

The performance of parallel CoreGen was measured using a 1/6 VHTR core model 
consisting of 56 assemblies. Meshes of 11M and 58M hexes were generated, on up to 56 
processors of the ANL Fusion cluster computer. Table 1 summarizes the model details of this 
model.  

Table 2 shows the maximum value (among all processors) of wall clock time, memory 
used, time to - load mesh files, copy/move mesh files, merge coincident nodes and save 
mesh. It is observed that as the number of processors increases and the work gets distributed 
the memory and time requirement for each sub-process decreases. The low speedup 
obtained when using 8 processors is due to higher communication cost during the merge 
operation and the fact that some processors have more than one mesh file loaded which 
causes load imbalance. This imbalance is resolved when the number of processors is greater 
than nA. 

 



 

Table 1. VHTR 1/6 core model details. nA and nT are the number of assembly mesh files 
and total number of assemblies forming the core, respectively. 

#Elements, Volumes 58.9 M hexes, 5536 

#nA, nT 12, 56 

#Interval Axial (Z), Radial Direction 80, 72 

Core Mesh File Size (GB) 6.52 

 
Table 2. VHTR 1/6 core time and memory results 

Procs 
Walltime 

(mins) 

Max. 
CPU 
time 

(mins) 

Max. 
Clock 
time 

(mins) 

Max. 
Memory 

used (GB) 

Max. 
Load 

mesh time 
(mins) 

Max. 
Copy/ 

move time 
(mins) 

Max. 
Merge 
time 

(mins) 

Max. 
Save 
time 

(mins) 
1 215.3& 214.8& 215& 14.1& 0.25& 141.8& 70.48& 2.25&
8 181.9& 89.8& 181.9& 7.4& 0.1& 59.6& 28.29& 1.69&
16 20.18& 19.8& 20& 4.9& 0.018& 1.4& 17.62& 0.8&
32 2.9& 2.7& 2.8& 1.29& 0.018& 0.12& 2.34& 0.25&
56 1.23& 1.01& 1.11& 0.84& 0.018& 0.001& 0.8& 0.18&

 

 

 
Figure 1. Plots for maximum wall time (min) and maximum memory used by a processor (GB) 

vs number of processors. 
 
RGG Applications 
 
VHTR 1/12, 1/6 and Full-Core Models 
 

Figure 2 shows geometries of 1/12th (right) and 1/6th (left) VHTR core, picture at the 
center is a close-up of the mesh output from the CoreGen tool. Figure 3 shows the full core 
model generated using RGG tools. Moving from left to right the rectangle in red shows 



 

zoomed view of the picture on the left. It must be noted that the blue outer covering of the 
assemblies is an interstice mesh which is carefully created offline to match other assemblies 

 

 

Figure 2. VHTR full-core: 23M hexes, 33k vols take 5.5 GB RAM and 30 min; 313 
assemblies. 

 
1/4th PWR Benchmark Reactor 
 
The benchmark problem “MOX Fuel Loaded Small PWR Core” can be found on the website of 
the Nuclear Reactor Analysis and Particle Transport surface of the core geometry and 
zoomed view of three regions A, B and C. This was model is [9]. Figure 4 shows the top 
created using the geometry feature of CoreGen program. 

 

Figure. 1. VHTR 1/6th: 53M hexes takes 10.4GB RAM and 12 mins (left), closeup (center), 
VHTR 1/12th (right). 



 

 

Figure 5. 2D geometry of a 1/4 PWR benchmark reactor, 11k vols takes 0.4 GB RAM and 18 
mins. 

 

Full Core MONJU Reactor 
 
STARCCM+ was used to visualize this full-core MONJU reactor model. The model and 715 
assemblies that are individually meshed using the CUBIT mesh generation toolkit. This 
resulting core is generated serially on a Linux workstation. 

 

Figure. 4. MONJU reactor, full core model: 9.7M hexes, 99k vols takes 4.3GB RAM and 176 
mins. 715 assemblies. 
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